Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
J Am Med Dir Assoc ; : 104980, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38593983

RESUMO

OBJECTIVE: Delirium is a serious neuropsychiatric syndrome frequently occurring in hospitalized older adults, for which pharmacological treatments have shown limited effectiveness. Multicomponent physical exercise programs have demonstrated functional benefits; however, the impact of exercise on the course of delirium remains unexplored. The aim of this study was to investigate the effect of an individualized, multicomponent exercise intervention on the evolution of delirium and patient outcomes. DESIGN: A single-center, single-blind randomized controlled trial. SETTING AND PARTICIPANTS: Medical inpatients with delirium in an acute geriatric unit of a tertiary public hospital. METHODS: Thirty-six patients (mean age 87 years) were recruited and randomized into 2 groups. The control group received usual care and the intervention group received individualized physical exercise (1 daily session) for 3 consecutive days. Primary endpoints were the duration and severity of delirium (4-AT, Memorial Delirium Assessment Scale) and change in functional status [Barthel Index, Short Physical Performance Battery, Hierarchical Assessment of Balance and Mobility (HABAM), and handgrip strength]. Secondary endpoints included length of stay, falls, and health outcomes at 1- and 3-month follow-up. RESULTS: The intervention group showed more functional improvement at discharge (HABAM, P = .015) and follow-up (Barthel, P = .041; Lawton P = .027). Less cognitive decline was observed at 1 and 3 months (Informant Questionnaire on Cognitive Decline in the Elderly, P = .017). Exercise seemed to reduce delirium duration by 1 day and contribute to delirium resolution at discharge, although findings did not reach statistical significance. No exercise-related adverse events occurred. CONCLUSION AND IMPLICATIONS: Findings suggest that individualized exercise in acutely hospitalized older patients with delirium is safe, may improve delirium course and help preserve post-hospitalization function and cognition.

2.
Brain Pathol ; : e13252, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454090

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, characterized by an early olfactory dysfunction, progressive memory loss, and behavioral deterioration. Albeit substantial progress has been made in characterizing AD-associated molecular and cellular events, there is an unmet clinical need for new therapies. In this study, olfactory tract proteotyping performed in controls and AD subjects (n = 17/group) showed a Braak stage-dependent proteostatic impairment accompanied by the progressive modulation of amyloid precursor protein and tau functional interactomes. To implement a computational repurposing of drug candidates with the capacity to reverse early AD-related olfactory omics signatures (OMSs), we generated a consensual OMSs database compiling differential omics datasets obtained by mass-spectrometry or RNA-sequencing derived from initial AD across the olfactory axis. Using the Connectivity Map-based drug repurposing approach, PKC, EGFR, Aurora kinase, Glycogen synthase kinase, and CDK inhibitors were the top pharmacologic classes capable to restore multiple OMSs, whereas compounds with targeted activity to inhibit PI3K, Insulin-like growth factor 1 (IGF-1), microtubules, and Polo-like kinase (PLK) represented a family of drugs with detrimental potential to induce olfactory AD-associated gene expression changes. To validate the potential therapeutic effects of the proposed drugs, in vitro assays were performed. These validation experiments revealed that pretreatment of human neuron-like SH-SY5Y cells with the EGFR inhibitor AG-1478 showed a neuroprotective effect against hydrogen peroxide-induced damage while the pretreatment with the Aurora kinase inhibitor Reversine reduced amyloid-beta (Aß)-induced neurotoxicity. Taken together, our data pointed out that OMSs may be useful as substrates for drug repurposing to propose novel neuroprotective treatments against AD.

3.
Expert Rev Proteomics ; 21(1-3): 55-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299555

RESUMO

INTRODUCTION: Due to the segmented functions and complexity of the human brain, the characterization of molecular profiles within specific areas such as brain structures and biofluids is essential to unveil the molecular basis for structure specialization as well as the molecular imbalance associated with neurodegenerative and psychiatric diseases. AREAS COVERED: Much of our knowledge about brain functionality derives from neurophysiological, anatomical, and transcriptomic approaches. More recently, laser capture and imaging proteomics, technological and computational developments in LC-MS/MS, as well as antibody/aptamer-based platforms have allowed the generation of novel cellular, spatial, and posttranslational dimensions as well as innovative facets in biomarker validation and druggable target identification. EXPERT OPINION: Proteomics is a powerful toolbox to functionally characterize, quantify, and localize the extensive protein catalog of the human brain across physiological and pathological states. Brain function depends on multi-dimensional protein homeostasis, and its elucidation will help us to characterize biological pathways that are essential to properly maintain cognitive functions. In addition, comprehensive human brain pathological proteomes may be the basis in computational drug-repositioning methods as a strategy for unveiling potential new therapies in neurodegenerative and psychiatric disorders.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Proteoma/genética , Proteoma/metabolismo , Cromatografia Líquida , Encéfalo/metabolismo , Biomarcadores/metabolismo
4.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338994

RESUMO

Many angles of personalized medicine, such as diagnostic improvements, systems biology [...].


Assuntos
Pesquisa Biomédica , Proteômica , Biologia de Sistemas , Medicina de Precisão
5.
Br J Cancer ; 130(5): 869-879, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38195888

RESUMO

BACKGROUND: Previous studies have shown that functional systemic immunity is required for the efficacy of PD-1/PD-L1 blockade immunotherapies in cancer. Hence, systemic reprogramming of immunosuppressive dysfunctional myeloid cells could overcome resistance to cancer immunotherapy. METHODS: Reprogramming of tumour-associated myeloid cells with oleuropein was studied by quantitative differential proteomics, phenotypic and functional assays in mice and lung cancer patients. Combinations of oleuropein and two different delivery methods of anti-PD-1 antibodies were tested in colorectal cancer tumour models and in immunotherapy-resistant lung cancer models. RESULTS: Oleuropein treatment reprogrammed monocytic and granulocytic myeloid-derived suppressor cells, and tumour-associated macrophages towards differentiation of immunostimulatory subsets. Oleuropein regulated major differentiation programmes associated to immune modulation in myeloid cells, which potentiated T cell responses and PD-1 blockade. PD-1 antibodies were delivered by two different strategies, either systemically or expressed within tumours using a self-amplifying RNA vector. Combination anti-PD-1 therapies with oleuropein increased tumour infiltration by immunostimulatory dendritic cells in draining lymph nodes, leading to systemic antitumour T cell responses. Potent therapeutic activities were achieved in colon cancer and lung cancer models resistant to immunotherapies, even leading to complete tumour regression. DISCUSSION: Oleuropein significantly improves the outcome of PD-1/PD-L1 blockade immunotherapy strategies by reprogramming myeloid cells.


Assuntos
Antígeno B7-H1 , Glucosídeos Iridoides , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Receptor de Morte Celular Programada 1 , Inibidores de Checkpoint Imunológico/farmacologia , Células Mieloides , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Microambiente Tumoral
6.
Geroscience ; 46(3): 3235-3247, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38236313

RESUMO

Postoperative delirium (POD) is a common neuropsychiatric complication in geriatric inpatients after hip fracture surgery and its occurrence is associated with poor outcomes. The purpose of this study was to investigate the relationship between preoperative biomarkers in serum and cerebrospinal fluid (CSF) and the development of POD in older hip fracture patients, exploring the possibility of integrating objective methods into future predictive models of delirium. Sixty hip fracture patients were recruited. Blood and CSF samples were collected at the time of spinal anesthesia when none of the subjects had delirium. Patients were assessed daily using the 4AT scale, and based on these results, they were divided into POD and non-POD groups. The Olink® platform was used to analyze 45 cytokines. Twenty-one patients (35%) developed POD. In the subsample of 30 patients on whom proteomic analyses were performed, a proteomic profile was associated with the incidence of POD. Chemokine (C-X-C motif) ligand 9 (CXCL9) had the strongest correlation between serum and CSF samples in patients with POD (rho = 0.663; p < 0.05). Although several cytokines in serum and CSF were associated with POD after hip fracture surgery in older adults, there was a significant association with lower preoperative levels of CXCL9 in CSF and serum. Despite the small sample size, this study provides preliminary evidence of the potential role of molecular biomarkers in POD, which may provide a basis for the development of new delirium predictive models.


Assuntos
Delírio , Delírio do Despertar , Fraturas do Quadril , Humanos , Idoso , Delírio do Despertar/complicações , Estudos Prospectivos , Delírio/etiologia , Delírio/epidemiologia , Proteômica , Biomarcadores , Fraturas do Quadril/cirurgia , Fraturas do Quadril/complicações , Citocinas
7.
Neuroscience ; 535: 203-217, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37949310

RESUMO

Multiple sclerosis (MS) is a complex autoimmune and neurodegenerative disorder that affects the central nervous system (CNS). It is characterized by a heterogeneous disease course involving demyelination and inflammation. In this study, we utilized two distinct animal models, cuprizone (CPZ)-induced demyelination and experimental autoimmune encephalomyelitis (EAE), to replicate various aspects of the disease. We aimed to investigate the differential CNS responses by examining the proteomic profiles of EAE mice during the peak disease (15 days post-induction) and cuprizone-fed mice during the acute phase (38 days). Specifically, we focused on two different regions of the CNS: the dorsal cortex (Cx) and the entire spinal cord (SC). Our findings revealed varied glial, synaptic, dendritic, mitochondrial, and inflammatory responses within these regions for each model. Notably, we identified a single protein, Orosomucoid-1 (Orm1), also known as Alpha-1-acid glycoprotein 1 (AGP1), that consistently exhibited alterations in both models and regions. This study provides insights into the similarities and differences in the responses of these regions in two distinct demyelinating models.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Orosomucoide/efeitos adversos , Cuprizona/toxicidade , Proteômica , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
8.
J Extracell Vesicles ; 12(11): e12378, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37932242

RESUMO

Extracellular vesicles (EVs) play a crucial role in intercellular communication, participating in the paracrine trophic support or in the propagation of toxic molecules, including proteins. RTP801 is a stress-regulated protein, whose levels are elevated during neurodegeneration and induce neuron death. However, whether RTP801 toxicity is transferred trans-neuronally via EVs remains unknown. Hence, we overexpressed or silenced RTP801 protein in cultured cortical neurons, isolated their derived EVs (RTP801-EVs or shRTP801-EVs, respectively), and characterized EVs protein content by mass spectrometry (MS). RTP801-EVs toxicity was assessed by treating cultured neurons with these EVs and quantifying apoptotic neuron death and branching. We also tested shRTP801-EVs functionality in the pathologic in vitro model of 6-Hydroxydopamine (6-OHDA). Expression of RTP801 increased the number of EVs released by neurons. Moreover, RTP801 led to a distinct proteomic signature of neuron-derived EVs, containing more pro-apoptotic markers. Hence, we observed that RTP801-induced toxicity was transferred to neurons via EVs, activating apoptosis and impairing neuron morphology complexity. In contrast, shRTP801-EVs were able to increase the arborization in recipient neurons. The 6-OHDA neurotoxin elevated levels of RTP801 in EVs, and 6-OHDA-derived EVs lost the mTOR/Akt signalling activation via Akt and RPS6 downstream effectors. Interestingly, EVs derived from neurons where RTP801 was silenced prior to exposing them to 6-OHDA maintained Akt and RPS6 transactivation in recipient neurons. Taken together, these results suggest that RTP801-induced toxicity is transferred via EVs, and therefore, it could contribute to the progression of neurodegenerative diseases, in which RTP801 is involved.


Assuntos
Vesículas Extracelulares , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Oxidopamina/toxicidade , Proteômica , Proteínas Proto-Oncogênicas c-akt , Vesículas Extracelulares/metabolismo
9.
Biol Sex Differ ; 14(1): 72, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875993

RESUMO

BACKGROUND: Aortic stenosis (AS) is characterized by inflammation, fibrosis, osteogenesis and angiogenesis. Men and women develop these mechanisms differently. Galectin-3 (Gal-3) is a pro-inflammatory and pro-osteogenic lectin in AS. In this work, we aim to analyse a potential sex-differential role of Gal-3 in AS. METHODS: 226 patients (61.50% men) with severe AS undergoing surgical aortic valve (AV) replacement were recruited. In AVs, Gal-3 expression and its relationship with inflammatory, osteogenic and angiogenic markers was assessed. Valve interstitial cells (VICs) were primary cultured to perform in vitro experiments. RESULTS: Proteomic analysis revealed that intracellular Gal-3 was over-expressed in VICs of male AS patients. Gal-3 secretion was also higher in men's VICs as compared to women's. In human AVs, Gal-3 protein levels were significantly higher in men, with stronger immunostaining in VICs with myofibroblastic phenotype and valve endothelial cells. Gal-3 levels in AVs were positively correlated with inflammatory markers in both sexes. Gal-3 expression was also positively correlated with osteogenic markers mainly in men AVs, and with angiogenic molecules only in this sex. In vitro, Gal-3 treatment induced expression of inflammatory, osteogenic and angiogenic markers in male's VICs, while it only upregulated inflammatory and osteogenic molecules in women-derived cells. Gal-3 blockade with pharmacological inhibitors (modified citrus pectin and G3P-01) prevented the upregulation of inflammatory, osteogenic and angiogenic molecules. CONCLUSIONS: Gal-3 plays a sex-differential role in the setting of AS, and it could be a new sex-specific therapeutic target controlling pathological features of AS in VICs.


Aortic stenosis (AS) is a condition that affects the aortic valves (AVs) of the heart and leads to death if untreated. Males and females show clear differences in the onset of AS, both clinically and in valve deterioration. In this study we identified galectin-3 (Gal-3) as a molecule involved in the development of AS alterations with different effects in men and women. We analyzed AVs of 226 patients (139 male and 87 female) with severe AS who underwent surgical AV replacement to study the association of Gal-3 with markers of mechanisms related to AS, such as inflammation, calcification and blood vessels formation. We performed experiments in valvular interstitial cells (VICs) to evaluate the impact of Gal-3 in these cells and its potential use as a therapeutic target. Our results showed that Gal-3 was more expressed in AVs and VICs of men over women. In AVs, Gal-3 levels were associated with inflammatory markers either in male and female, while they correlated with osteogenic markers mainly in men and with angiogenic only in male. The treatment of VICs with Gal-3 produced increased levels of inflammatory and osteogenic molecules by cells of both sexes, but of angiogenic markers only in male's. Pharmacological inhibition of Gal-3 prevented the increase of these pathological markers in VICs. Overall, our study indicates that Gal-3 is a molecule implicated in the setting of AS in a sex-differential way and its targeting may lead to a new sex-specific therapeutic option for AS treatment.


Assuntos
Estenose da Valva Aórtica , Galectina 3 , Feminino , Humanos , Masculino , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Células Endoteliais/metabolismo , Proteômica
10.
Immun Ageing ; 20(1): 55, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853468

RESUMO

Osteoporosis is a skeletal disease that can increase the risk of fractures, leading to adverse health and socioeconomic consequences. However, current clinical methods have limitations in accurately estimating fracture risk, particularly in older adults. Thus, new technologies are necessary to improve the accuracy of fracture risk estimation. In this observational study, we aimed to explore the association between serum cytokines and hip fracture status in older adults, and their associations with fracture risk using the FRAX reference tool. We investigated the use of a proximity extension assay (PEA) with Olink. We compared the characteristics of the population, functional status and detailed body composition (determined using densitometry) between groups. We enrolled 40 participants, including 20 with hip fracture and 20 without fracture, and studied 46 cytokines in their serum. After conducting a score plot and two unpaired t-tests using the Benjamini-Hochberg method, we found that Interleukin 6 (IL-6), Lymphotoxin-alpha (LT-α), Fms-related tyrosine kinase 3 ligand (FLT3LG), Colony stimulating factor 1 (CSF1), and Chemokine (C-C motif) ligand 7 (CCL7) were significantly different between fracture and non-fracture patients (p < 0.05). IL-6 had a moderate correlation with FRAX (R2 = 0.409, p < 0.001), while CSF1 and CCL7 had weak correlations with FRAX. LT-α and FLT3LG exhibited a negative correlation with the risk of fracture. Our results suggest that targeted proteomic tools have the capability to identify differentially regulated proteins and may serve as potential markers for estimating fracture risk. However, longitudinal studies will be necessary to validate these results and determine the temporal patterns of changes in cytokine profiles.

11.
Nat Commun ; 14(1): 6332, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816716

RESUMO

Drug combinations are key to circumvent resistance mechanisms compromising response to single anti-cancer targeted therapies. The implementation of combinatorial approaches involving MEK1/2 or KRASG12C inhibitors in the context of KRAS-mutated lung cancers focuses fundamentally on targeting KRAS proximal activators or effectors. However, the antitumor effect is highly determined by compensatory mechanisms arising in defined cell types or tumor subgroups. A potential strategy to find drug combinations targeting a larger fraction of KRAS-mutated lung cancers may capitalize on the common, distal gene expression output elicited by oncogenic KRAS. By integrating a signature-driven drug repurposing approach with a pairwise pharmacological screen, here we show synergistic drug combinations consisting of multi-tyrosine kinase PKC inhibitors together with MEK1/2 or KRASG12C inhibitors. Such combinations elicit a cytotoxic response in both in vitro and in vivo models, which in part involves inhibition of the PKC inhibitor target AURKB. Proteome profiling links dysregulation of MYC expression to the effect of both PKC inhibitor-based drug combinations. Furthermore, MYC overexpression appears as a resistance mechanism to MEK1/2 and KRASG12C inhibitors. Our study provides a rational framework for selecting drugs entering combinatorial strategies and unveils MEK1/2- and KRASG12C-based therapies for lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Reposicionamento de Medicamentos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Combinação de Medicamentos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Linhagem Celular Tumoral
12.
Sci Rep ; 13(1): 14622, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670049

RESUMO

Extracellular vesicles (EVs) are key mediators of cell-to-cell communication. Their content reflects the state of diseased cells representing a window into disease progression. Collagen-VI Related Muscular Dystrophy (COL6-RD) is a multi-systemic disease involving different cell types. The role of EVs in this disease has not been explored. We compared by quantitative proteomics the protein cargo of EVs released from fibroblasts from patients with COL6-RD and controls. Isolated EVs contained a significant proportion of the most frequently reported proteins in EVs according to Exocarta and Vesiclepedia. We identified 67 differentially abundant proteins associated with vesicle transport and exocytosis, actin remodelling and the cytoskeleton, hemostasis and oxidative stress. Treatment of control fibroblasts with EVs from either patient or healthy fibroblasts altered significantly the motility of cells on a cell migration assay highlighting the functional relevance of EVs. In parallel, we analysed the secretome from the same cells and found a distinctly different set of 48 differentially abundant proteins related to extracellular matrix organisation and remodelling, growth factor response, RNA metabolism and the proteasome. The EVs and secretome sets of proteins only shared two identifiers indicating that the sorting of proteins towards EVs or the secretory pathway is tightly regulated for different functions.


Assuntos
Vesículas Extracelulares , Proteômica , Humanos , Colágeno , Fibroblastos , Movimento Celular
13.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37463753

RESUMO

Insulin-like growth factor-I (IGF-I) exerts multiple actions, yet the role of IGF-I from different sources is poorly understood. Here, we explored the functional and behavioral consequences of the conditional deletion of Igf-I in the nervous system (Igf-I Δ/Δ), and demonstrated that long-term potentiation was impaired in hippocampal slices. Moreover, Igf-I Δ/Δ mice showed spatial memory deficits in the Morris water maze, and the significant sex-dependent differences displayed by Igf-I Ctrl/Ctrl mice disappeared in Igf-I Δ/Δ mice in the open field and rota-rod tests. Brain Igf-I deletion disorganized the granule cell layer of the dentate gyrus (DG), and it modified the relative expressions of GAD and VGLUT1, which are preferentially localized to inhibitory and excitatory presynaptic terminals. Furthermore, Igf-I deletion altered protein modules involved in receptor trafficking, synaptic proteins, and proteins that functionally interact with estrogen and androgen metabolism. Our findings indicate that brain IGF-I is crucial for long-term potentiation, and that it is involved in the regulation of spatial memory and sexual dimorphic behaviors, possibly by maintaining the granule cell layer structure and the stability of synaptic-related protein modules.


Assuntos
Fator de Crescimento Insulin-Like I , Potenciação de Longa Duração , Animais , Camundongos , Encéfalo/metabolismo , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Memória Espacial
14.
Brain ; 146(12): 4949-4963, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37403195

RESUMO

Learning and memory mainly rely on correct synaptic function in the hippocampus and other brain regions. In Parkinson's disease, subtle cognitive deficits may even precede motor signs early in the disease. Hence, we set out to unravel the earliest hippocampal synaptic alterations associated with human α-synuclein overexpression prior to and soon after the appearance of cognitive deficits in a parkinsonism model. We bilaterally injected adeno-associated viral vectors encoding A53T-mutated human α-synuclein into the substantia nigra of rats, and evaluated them 1, 2, 4 and 16 weeks post-inoculation by immunohistochemistry and immunofluorescence to study degeneration and distribution of α-synuclein in the midbrain and hippocampus. The object location test was used to evaluate hippocampal-dependent memory. Sequential window acquisition of all theoretical mass spectrometry-based proteomics and fluorescence analysis of single-synapse long-term potentiation were used to study alterations to protein composition and plasticity in isolated hippocampal synapses. The effect of L-DOPA and pramipexole on long-term potentiation was also tested. Human α-synuclein was found within dopaminergic and glutamatergic neurons of the ventral tegmental area, and in dopaminergic, glutamatergic and GABAergic axon terminals in the hippocampus from 1 week post-inoculation, concomitant with mild dopaminergic degeneration in the ventral tegmental area. In the hippocampus, differential expression of proteins involved in synaptic vesicle cycling, neurotransmitter release and receptor trafficking, together with impaired long-term potentiation were the first events observed (1 week post-inoculation), preceding cognitive deficits (4 weeks post-inoculation). Later on, at 16 weeks post-inoculation, there was a deregulation of proteins involved in synaptic function, particularly those involved in the regulation of membrane potential, ion balance and receptor signalling. Hippocampal long-term potentiation was impaired before and soon after the onset of cognitive deficits, at 1 and 4 weeks post-inoculation, respectively. L-DOPA recovered hippocampal long-term potentiation more efficiently at 4 weeks post-inoculation than pramipexole, which partially rescued it at both time points. Overall, we found impaired synaptic plasticity and proteome dysregulation at hippocampal terminals to be the first events that contribute to the development of cognitive deficits in experimental parkinsonism. Our results not only point to dopaminergic but also to glutamatergic and GABAergic dysfunction, highlighting the relevance of the three neurotransmitter systems in the ventral tegmental area-hippocampus interaction from the earliest stages of parkinsonism. The proteins identified in the current work may constitute potential biomarkers of early synaptic damage in the hippocampus and hence, therapies targeting these could potentially restore early synaptic malfunction and consequently, cognitive deficits in Parkinson's disease.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Ratos , Animais , alfa-Sinucleína/metabolismo , Levodopa/farmacologia , Pramipexol/farmacologia , Hipocampo/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurotransmissores/metabolismo , Cognição
15.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298081

RESUMO

Gastric cancer (GC) is a major public health problem worldwide, with high mortality rates due to late diagnosis and limited treatment options. Biomarker research is essential to improve the early detection of GC. Technological advances and research methodologies have improved diagnostic tools, identifying several potential biomarkers for GC, including microRNA, DNA methylation markers, and protein-based biomarkers. Although most studies have focused on identifying biomarkers in biofluids, the low specificity of these markers has limited their use in clinical practice. This is because many cancers share similar alterations and biomarkers, so obtaining them from the site of disease origin could yield more specific results. As a result, recent research efforts have shifted towards exploring gastric juice (GJ) as an alternative source for biomarker identification. Since GJ is a waste product during a gastroscopic examination, it could provide a "liquid biopsy" enriched with disease-specific biomarkers generated directly at the damaged site. Furthermore, as it contains secretions from the stomach lining, it could reflect changes associated with the developmental stage of GC. This narrative review describes some potential biomarkers for gastric cancer screening identified in gastric juice.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Biomarcadores Tumorais/genética , Suco Gástrico , MicroRNAs/genética
16.
Front Aging Neurosci ; 15: 1174644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251808

RESUMO

Delirium is a neuropsychiatric syndrome associated with increased morbidity and mortality in older patients. The aim of this study was to review predictive biomarkers of delirium in older patients to gain insights into the pathophysiology of this syndrome and provide guidance for future studies. Two authors independently and systematically searched MEDLINE, Embase, Cochrane Library, Web of Science and Scopus databases up to August 2021. A total of 32 studies were included. Only 6 studies were eligible for the meta-analysis, pooled results showed a significant increase in some serum biomarkers (C-reactive protein [CRP], tumour necrosis factor alpha [TNF-α] and interleukin-6 [IL-6]) among patients with delirium (odds ratio = 1.88, 95% CI 1.01 to 1.637; I2 = 76.75%). Although current evidence does not favour the use of any particular biomarker, serum CRP, TNF-α, and IL-6 were the most consistent biomarkers of delirium in older patients.

17.
Aging (Albany NY) ; 15(9): 3295-3330, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179123

RESUMO

AIMS: (Phospho)proteomics of old-aged subjects without cognitive or behavioral symptoms, and without AD-neuropathological changes and lacking any other neurodegenerative alteration will increase understanding about the physiological state of human brain aging without associate neurological deficits and neuropathological lesions. METHODS: (Phospho)proteomics using conventional label-free- and SWATH-MS (Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) has been assessed in the frontal cortex (FC) of individuals without NFTs, senile plaques (SPs) and age-related co-morbidities classified by age (years) in four groups; group 1 (young, 30-44); group 2 (middle-aged: MA, 45-52); group 3 (early-elderly, 64-70); and group 4 (late-elderly, 75-85). RESULTS: Protein levels and deregulated protein phosphorylation linked to similar biological terms/functions, but involving different individual proteins, are found in FC with age. The modified expression occurs in cytoskeleton proteins, membranes, synapses, vesicles, myelin, membrane transport and ion channels, DNA and RNA metabolism, ubiquitin-proteasome-system (UPS), kinases and phosphatases, fatty acid metabolism, and mitochondria. Dysregulated phosphoproteins are associated with the cytoskeleton, including microfilaments, actin-binding proteins, intermediate filaments of neurons and glial cells, and microtubules; membrane proteins, synapses, and dense core vesicles; kinases and phosphatases; proteins linked to DNA and RNA; members of the UPS; GTPase regulation; inflammation; and lipid metabolism. Noteworthy, protein levels of large clusters of hierarchically-related protein expression levels are stable until 70. However, protein levels of components of cell membranes, vesicles and synapses, RNA modulation, and cellular structures (including tau and tubulin filaments) are markedly altered from the age of 75. Similarly, marked modifications occur in the larger phosphoprotein clusters involving cytoskeleton and neuronal structures, membrane stabilization, and kinase regulation in the late elderly. CONCLUSIONS: Present findings may increase understanding of human brain proteostasis modifications in the elderly in the subpopulation of individuals not having AD neuropathological change and any other neurodegenerative change in any telencephalon region.


Assuntos
Doença de Alzheimer , Doenças do Sistema Nervoso , Idoso , Humanos , Pessoa de Meia-Idade , Doença de Alzheimer/metabolismo , Citoesqueleto/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Doenças do Sistema Nervoso/metabolismo , Monoéster Fosfórico Hidrolases , Proteínas tau/metabolismo
18.
Front Immunol ; 14: 1130044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187754

RESUMO

A complex network of interactions exists between the olfactory, immune and central nervous systems. In this work we intend to investigate this connection through the use of an immunostimulatory odorant like menthol, analyzing its impact on the immune system and the cognitive capacity in healthy and Alzheimer's Disease Mouse Models. We first found that repeated short exposures to menthol odor enhanced the immune response against ovalbumin immunization. Menthol inhalation also improved the cognitive capacity of immunocompetent mice but not in immunodeficient NSG mice, which exhibited very poor fear-conditioning. This improvement was associated with a downregulation of IL-1ß and IL-6 mRNA in the brain´s prefrontal cortex, and it was impaired by anosmia induction with methimazole. Exposure to menthol for 6 months (1 week per month) prevented the cognitive impairment observed in the APP/PS1 mouse model of Alzheimer. Besides, this improvement was also observed by the depletion or inhibition of T regulatory cells. Treg depletion also improved the cognitive capacity of the APPNL-G-F/NL-G-F Alzheimer´s mouse model. In all cases, the improvement in learning capacity was associated with a downregulation of IL-1ß mRNA. Blockade of the IL-1 receptor with anakinra resulted in a significant increase in cognitive capacity in healthy mice as well as in the APP/PS1 model of Alzheimer´s disease. These data suggest an association between the immunomodulatory capacity of smells and their impact on the cognitive functions of the animals, highlighting the potential of odors and immune modulators as therapeutic agents for CNS-related diseases.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Mentol/uso terapêutico , Precursor de Proteína beta-Amiloide/genética , Linfócitos T Reguladores , Camundongos Transgênicos , Cognição , Imunidade
19.
Neurobiol Dis ; 183: 106166, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245833

RESUMO

Synucleinopathies are a group of neurodegenerative diseases without effective treatment characterized by the abnormal aggregation of alpha-synuclein (aSyn) protein. Changes in levels or in the amino acid sequence of aSyn (by duplication/triplication of the aSyn gene or point mutations in the encoding region) cause familial cases of synucleinopathies. However, the specific molecular mechanisms of aSyn-dependent toxicity remain unclear. Increased aSyn protein levels or pathological mutations may favor abnormal protein-protein interactions (PPIs) that could either promote neuronal death or belong to a coping response program against neurotoxicity. Therefore, the identification and modulation of aSyn-dependent PPIs can provide new therapeutic targets for these diseases. To identify aSyn-dependent PPIs we performed a proximity biotinylation assay based on the promiscuous biotinylase BioID2. When expressed as a fusion protein, BioID2 biotinylates by proximity stable and transient interacting partners, allowing their identification by streptavidin affinity purification and mass spectrometry. The aSyn interactome was analyzed using BioID2-tagged wild-type (WT) and pathological mutant E46K aSyn versions in HEK293 cells. We found the 14-3-3 epsilon isoform as a common protein interactor for WT and E46K aSyn. 14-3-3 epsilon correlates with aSyn protein levels in brain regions of a transgenic mouse model overexpressing WT human aSyn. Using a neuronal model in which aSyn cell-autonomous toxicity is quantitatively scored by longitudinal survival analysis, we found that stabilization of 14-3-3 protein-proteins interactions with Fusicoccin-A (FC-A) decreases aSyn-dependent toxicity. Furthermore, FC-A treatment protects dopaminergic neuronal somas in the substantia nigra of a Parkinson's disease mouse model. Based on these results, we propose that the stabilization of 14-3-3 epsilon interaction with aSyn might reduce aSyn toxicity, and highlight FC-A as a potential therapeutic compound for synucleinopathies.


Assuntos
Sinucleinopatias , alfa-Sinucleína , Camundongos , Humanos , Animais , alfa-Sinucleína/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Células HEK293 , Camundongos Transgênicos , Neurônios Dopaminérgicos/metabolismo
20.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047532

RESUMO

Transcriptomics and phosphoproteomics were carried out in the cerebral cortex of B6.Cg-Mapttm1(EGFP)Klt (tau knockout: tau-KO) and wild-type (WT) 12 month-old mice to learn about the effects of tau ablation. Compared with WT mice, tau-KO mice displayed reduced anxiety-like behavior and lower fear expression induced by aversive conditioning, whereas recognition memory remained unaltered. Cortical transcriptomic analysis revealed 69 downregulated and 105 upregulated genes in tau-KO mice, corresponding to synaptic structures, neuron cytoskeleton and transport, and extracellular matrix components. RT-qPCR validated increased mRNA levels of col6a4, gabrq, gad1, grm5, grip2, map2, rab8a, tubb3, wnt16, and an absence of map1a in tau-KO mice compared with WT mice. A few proteins were assessed with Western blotting to compare mRNA expression with corresponding protein levels. Map1a mRNA and protein levels decreased. However, ß-tubulin III and GAD1 protein levels were reduced in tau-KO mice. Cortical phosphoproteomics revealed 121 hypophosphorylated and 98 hyperphosphorylated proteins in tau-KO mice. Deregulated phosphoproteins were categorized into cytoskeletal (n = 45) and membrane proteins, including proteins of the synapses and vesicles, myelin proteins, and proteins linked to membrane transport and ion channels (n = 84), proteins related to DNA and RNA metabolism (n = 36), proteins connected to the ubiquitin-proteasome system (UPS) (n = 7), proteins with kinase or phosphatase activity (n = 21), and 22 other proteins related to variegated pathways such as metabolic pathways, growth factors, or mitochondrial function or structure. The present observations reveal a complex altered brain transcriptome and phosphoproteome in tau-KO mice with only mild behavioral alterations.


Assuntos
Proteostase , Proteínas tau , Camundongos , Animais , Camundongos Knockout , Proteínas tau/genética , Proteínas tau/metabolismo , Neurônios/metabolismo , Córtex Cerebral/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...